Sunday, December 23, 2012

The Moon


The moon is Earth's only natural satellite. The moon is a cold, dry orb (spherical body) whose surface is studded with craters and strewn with rocks and dust (called regolith). The moon has no atmosphere.It is the fifth largest satellite in the Solar System. It is the largest natural satellite of a planet in the Solar System relative to the size of its primary, having 27% the diameter and 60% the density of Earth, resulting in 1⁄81 its mass. The Moon is the second densest satellite after Io, a satellite of Jupiter. It is the brightest object in the sky after the Sun, although its surface is actually very dark, with a reflectance similar to that of coal.

The Moon is in synchronous rotation with Earth, always showing the same face with its near side marked by dark volcanic maria that fill between the bright ancient crustal highlands and the prominent impact craters.The moon revolves around the Earth in about one month (27 days 8 hours). It rotates around its own axis in the same amount of time. So the same side of the moon always faces the Earth; it is in a synchronous rotation with the Earth.The far side of the moon was first observed by humans in 1959 when the unmanned Soviet Luna 3 mission orbited the moon and photographed it. Neil Armstrong and Buzz Aldrin (on NASA's Apollo 11 mission, which also included Michael Collins) were the first people to walk on the moon, on July 20, 1969.On the moon, the sky would always appear dark, even during the daytime. Also, from any spot on the moon (except on the far side of the moon where you cannot see the Earth), the Earth would always be in the same place in the sky; the phase of the Earth changes and the Earth rotates, displaying various continents.

The average distance from Earth to the Moon is 384,400 km (238,900 mi). The actual distance varies over the course of the orbit of the moon, from 356,700 km (221,600 mi) at the perigee and 406,300 km (252,500 mi) at apogee.The Moon is spiraling away from Earth at an average rate of 3.8 cm (1.5 in) per year, as detected by the Lunar Laser Ranging Experiment.The Moon's orbit is expanding over time as it slows down (the Earth is also slowing down as it loses energy). For example, a billion years ago, the Moon was much closer to the Earth (roughly 200,000 kilometers) and took only 20 days to orbit the Earth. Also, one Earth 'day' was about 18 hours long (instead of our 24 hour day). The tides on Earth were also much stronger since the moon was closer to the Earth.

Lunar Features 

Saros

The saros is the roughly 18-year periodic cycle of the Earth-Moon-Sun system. Every 6,585 days, the Earth, Moon and Sun are in exactly the same position. When there is a lunar eclipse, there will also be one exactly 6,585 days later.

Size

The moon's diameter is 2,159 miles (3,474 km), 27% of the diameter of the Earth (a bit over a quarter of the Earth's diameter).

The gravitational tidal influence of the Moon on the Earth is about twice as strong as the Sun's gravitational tidal influence. The Earth:moon size ratio is quite small in comparison to ratios of most other planet:moon systems (for most planets in our Solar System, the moons are much smaller in comparison to the planet and have less of an effect on the planet).

Mass & Gravity 

 The moon's mass is (7.35 x 10 22 kg), about 1/81 of the Earth's mass.  The moon's gravitational force is only 17% of the Earth's gravity. For example, a 100 pound (45 kg) person would weigh only 17 pounds (7.6 kg) on the Moon. The moon's density is 3340 kg/m 3. This is about 3/5 the density of the Earth.

Temperature

The temperature on the Moon ranges from daytime highs of about 130°C = 265°F to nighttime lows of about -110°C = -170°F

Atmosphere

The moon has no atmosphere. On the moon, the sky is always appears dark, even on the bright side (because there is no atmosphere). Also, since sound waves travel through air, the moon is silent; there can be no sound transmission on the moon.

Mare

Mare (plural maria) means "sea," but maria on the moon are plains on the moon. They are called maria because very early astronomers thought that these areas on the moon were great seas. The first moon landing was in the Mare Tranquillitatis (the Sea of Tranquility). Maria are concentrated on the side of the moon that faces the Earth; the far side has very few of these plains. Scientists don't know why this is so.

Craters and Rills 

The surface of the moon is scarred by millions of (mostly circular) impact craters, caused by asteroids, comets, and meteorites. There is no atmosphere on the moon to help protect it from bombardment from potential impactors (most objects from space burn up in our atmosphere). Also, there is no erosion (wind or precipitation) and little geologic activity to wear away these craters, so they remain unchanged until another new impact changes it.

These craters range in size up to many hundreds of kilometers, but the most enormous craters have been flooded by lava, and only parts of the outline are visible. The low elevation maria (seas) have fewer craters than other areas. This is because these areas formed more recently, and have had less time to be hit. The biggest intact lunar crater is Clavius which is 100 miles (160 km) in diameter.

A rille is a long, narrow valley on the surface of the moon. Hadley Rille is a long valley on the surface of the moon. This rille is 75 miles (125 km) long, 1300 feet (400 m) deep, and almost 1 mile (1500 m) wide at its widest point. It was formed by molten basaltic lava that carved out a steep channel along the base of the Apennine Front (which was explored by the Apollo 15 astronauts in 1971). 



Formation

The prevailing hypothesis today is that the Earth–Moon system formed as a result of a giant impact: a Mars-sized body (Thea) hitting the newly formed proto-Earth, blasting material into orbit around it, which accreted to form the Moon. Giant impacts are thought to have been common in the early Solar System. Computer simulations modelling a giant impact are consistent with measurements of the angular momentum of the Earth–Moon system and the small size of the lunar core. These simulations also show that most of the Moon came from the impactor, not from the proto-Earth. However more recent tests suggest more of the Moon coalesced from the Earth and not the impactor.Meteorites show that other inner Solar System bodies such as Mars and Vesta have very different oxygen and tungsten isotopic compositions to the Earth, while the Earth and Moon have near-identical isotopic compositions. Post-impact mixing of the vaporized material between the forming Earth and Moon could have equalized their isotopic compositions,although this is debated.


Another Theory 



Evidences in favour of Thea Hypothesis :

The Earth has a large iron core, but the moon does not have a large core. This is because Earth's iron had already drained into the core by the time the giant impact happened. Therefore, the debris blown out of both Earth and the impactor came from their iron-depleted, rocky mantles. The iron core of the impactor melted on impact and merged with the iron core of Earth, according to computer models.

Earth has a mean density of 5.5 grams/cubic centimeter, but the moon has a density of only 3.3 g/cc. The reason is the same, that the moon lacks iron.

The moon has exactly the same oxygen isotope composition as the Earth, whereas Mars rocks and meteorites from other parts of the solar system have different oxygen isotope compositions. This shows that the moon formed form material formed in Earth's neighborhood.

If a theory about lunar origin calls for an evolutionary process, it has a hard time explaining why other planets do not have similar moons. (Only Pluto has a moon that is an appreciable fraction of its own size.) Our giant impact hypothesis had the advantage of invoking a stochastic catastrophic event that might happen only to one or two planets out of nine. 

Internal structure of the Moon 

 Like the terrestrial or rocky planets Venus, Mercury, Earth and Mars, the Moon is made up of concentric layers formed by the melting and separation of magma.There is a solid outer crust about 65km deep, below which is a silicate mantle about 1,000km thick. At the centre there is a metallic core with a radius of about 500km.The core is not magnetic, suggesting that unlike the Earth's core, the centre of the Moon is solid and has no convection.



Behaviour of the Moon

Phases

As the Moon travels around the Earth, its appearance in the night sky changes. As the Moon does not emit any light of its own, we can only see it when it is reflecting the Sun's light.

Depending on the relative positions of the Moon and Sun, different amounts of the Moon will be visible from Earth. These changes in the appearance of the Moon are known as phases.

Occasionally the Moon passes between the Sun and Earth blocking out the Sun's light from Earth. When the Earth passes through the Moon's shadow like this it produces a solar eclipse. More frequently, however, the situation is reversed and it is the Moon that passes through the Earth's shadow producing a lunar eclipse.

   
Gravity

The mass of the Moon is about a hundred times smaller than the Earth. Although this may appear small, it is in fact relatively large for a natural satellite. Because of this relatively large mass, the Moon's gravity exerts enough force to move the oceans and create tides.

These tidal forces also make the Moon rotate on its axis once a day. This means that the same side of the Moon always faces the Earth and we never see the far side of the Moon. 

Moon Exploration Missions 




Indian Lunar Probes - Chandrayaan 1 & Chandrayaan 2 (to be launched)

Lunar Water 

Inconclusive evidence of free water ice at the lunar poles was accumulated from a variety of observations suggesting the presence of bound hydrogen. In September 2009, Moon Mineralogy Mapper (M3) on India's Chandrayaan-1 detected water on the Moon.In November 2009, NASA reported that its LCROSS space probe had detected a significant amount of hydroxyl group in the material thrown up from a south polar crater by an impactor; this may be attributed to water-bearing materials – what appears to be "near pure crystalline water-ice". In March 2010, it was reported that the Mini-RF on board the India's Chandrayaan-1 had discovered more than 40 permanently darkened craters near the Moon's north pole which are hypothesized to contain an estimated 600 million metric tonnes(1.3 trillion pounds) of water-ice. 

Water may have been delivered to the Moon over geological timescales by the regular bombardment of water-bearing comets, asteroids and meteoroids or continuously produced in situ by the hydrogen ions (protons) of the solar wind impacting oxygen-bearing minerals. The search for the presence of lunar water has attracted considerable attention and motivated several recent lunar missions, largely because of water's usefulness in rendering long-term lunar habitation feasible.

The presence of large quantities of water on the Moon would be an important factor in rendering lunar habitation cost-effective, since transporting water (or hydrogen and oxygen) from Earth would be prohibitively expensive. If future investigations find the quantities to be particularly large, water ice could be mined to provide liquid water for drinking and plant propagation, and the water could also be split into hydrogen and oxygen by solar panel-equipped electric power stations or a nuclear generator, providing breathable oxygen as well as the components of rocket fuel. The hydrogen component of the water ice could also be used to draw out the oxides in the lunar soil and harvest even more oxygen.Analysis of lunar ice would also provide scientific information about the impact history of the Moon and the abundance of comets and asteroids in the early inner solar system.

Importance of Moon and its Study 

The Earth was hit by asteroids and comets more often than the Moon, however, because Earth is larger and has more gravity. This increased gravity also caused the impactors to be accelerated to higher velocities towards the Earth. That must have been a catastrophic time to be here. When some of these impactors hit the Earth, the explosion caused rocks and dirt from Earth to shoot up and away from our planet. Some of that projected material flew all over the solar system, and some of it landed on the Moon. There could be a few hundred kilograms of Earth material per square kilometer of the Moon’s surface, buried under a few meters of lunar soil. It would be interesting to retrieve those rocks and bring back samples of the early Earth. Almost nothing from this time period has survived on the Earth because of tectonic recycling of the crust plates or because of atmospheric weathering. We would try to detect some organics within those rocks, and that could tell us about the history of organic chemistry on Earth. Some of these rocks could even have preserved fossils of life. Such rocks could help us look further back into the fossil record, which now stops at 3.5 billion years ago. This way, we could possibly learn about the emergence of life on Earth.

By exploring the Moon, we also can get clues on how the Earth has evolved. We can study processes on the Moon that have also shaped the Earth, like volcanism and tectonics. Because the Moon is smaller than the Earth, the Moon’s radiogenic heating dissipated much faster. After about one billion years, the interior of the Moon didn’t evolve much, and surface changes mostly were due to impacts. There was a brief period of magmatic activity from the subsurface -- a few plumes of magma made their way up to the surface and filled newly formed impact basins with basalt, creating what we call the Maria. This happened up to about 2 billion years ago. Because the Moon offers different conditions than the Earth, we can better understand how physical processes work generally by studying a larger range of parameters than just the Earth’s.

The Moon affects the liquid envelope of the Earth, and the oceanic tides in particular. The Moon affects the ocean tides more in some areas than others. For instance, in the channel between the British Isles and the European continent, the tidal range can be 10 meters, compared to what you see in the Pacific, where it is below a meter. The crust of the Earth is also affected. The Moon’s tidal forcing causes significant heating and dissipation of energy to take place. Part of this energy is heating the Earth, and part of it is dissipated by forcing the Moon to recede from the Earth over time. There are people who propose that the tidal effect of the Moon may have helped trigger the convection on the Earth that led to the multi-plate tectonics. The other planets don’t have the same tectonic cycle. For most of them, the crust is like a lid that doesn’t move much horizontally, and the magma and heat are blocked by this lid on the surface. The Earth instead has rolling convective motion that drags the crust, and then the crust plunges back down into the mantle and gets recycled. 

There are some very subtle effects of the Moon in the climate and the oceans. One pattern that has been found recently is related to the Pacific Ocean’s El NiƱo phenomenon. You have a cold undersea current coming from the Antarctic sea, and that creates the Humboldt stream which keeps the sea around the South American coast near Peru and Chile quite cold. Because of this, there are fewer clouds and less precipitation there. Sometimes this current drifts away from the coast, and then you have much more cloud formation and a period of very bad weather over South America. Satellites have monitored this stream over the Pacific Ocean and they have found some streams which were not known before. They can connect some of these streams with how the Moon’s tidal effect influences the mixing of the deep ocean. There was a French-American mission called TOPEX/Poseidon that accurately measured the altitude of the sea and detected a little stream a few centimeters high. That doesn’t seem like a lot, but over the whole area of the Pacific Ocean it represents a huge amount of water transferred from one place to another.

If you would take away the Moon suddenly, it would change the global altitude of the ocean. Right now there is a distortion which is elongated around the equator, so if we didn’t have this effect, suddenly a lot of water would be redistributed toward the polar regions.

The Moon has been a stabilizing factor for the axis of rotation of the Earth. If you look at Mars, for instance, that planet has wobbled quite dramatically on its axis over time due to the gravitational influence of all the other planets in the solar system. Because of this obliquity change, the ice that is now at the poles on Mars would sometimes drift to the equator. But the Earth’s moon has helped stabilize our planet so that its axis of rotation stays in the same direction. For this reason, we had much less climatic change than if the Earth had been alone. And this has changed the way life evolved on Earth, allowing for the emergence of more complex multi-cellular organisms compared to a planet where drastic climatic change would allow only small, robust organisms to survive.

The Moon has influenced biology in other ways as well. For species living near the coast, the tide is an important factor. When you look at the shorelines, you can recognize different layers of organisms that have adapted to the salt water conditions based on the ebb and flow of the tide.

The eyesight of many mammals is sensitive to moonlight. The level of adaptation of night vision would be very different without the Moon. Many of these species have evolved in such a way that their night vision could work in even partial lunar illumination, because that’s when they are most active. But they can be more subjected to predators, too, so there is a balance between your ability to see and your ability not to be seen. The Moon has completely changed evolution in that aspect.

Human vision is so sensitive that we are almost able to work by the light of the Milky Way. The full Moon has more light than we need to see at night. For most of our history, we were hunting and fishing or doing agriculture, and we organized our lives by using the Moon. It determined the time for hunting, or the time where we could harvest. That’s why most of our calendars are based on the Moon.

In a recent workshop called “Earth-Moon Relationships,” psychologists discussed the relation between the lunar phases and several aspects of life. There was a very interesting correlation, not with the birth of children, but with the time of conception. Perhaps that is due to some social or sentimental value of the Moon. We tend to forget the impact the Moon has on our lives because we use electric lights, but for most of our history we had to adapt our behavior to the lunar phases.

Finally, the Moon had a key role in the emergence of science, and in our understanding of our place in the universe. We saw the repetition of the phenomena of lunar phases, and we observed solar and lunar eclipses. These were big challenges to our understanding of nature, and a few astronomers were put to death because they weren’t able to predict the eclipses. This challenged us to develop accurate predictions for the motion of the sun and the motion of the Moon.

Studying the Moon helped us determine distances in the solar system and the size of celestial objects. By studying lunar phases, for example, people were able to determine how far the Moon is from the Earth, the size of the Earth, and our distance from the sun. More recently, the Moon was the terrain where the space race took place between two political systems, allowing for great technical and scientific achievements. The Moon has inspired humankind to learn how to travel to space, and to bring life beyond Earth’s cradle.







No comments:

Post a Comment