The Voyager program is an American scientific program that launched two unmanned space missions, the probes Voyager 1 and Voyager 2. These were launched in 1977 to take advantage of a favorable alignment of the planets during the late 1970s. Of all the NASA missions, none has visited as many planets, rings, and satellites, nor has provided as many fresh insights into the outer planets, as Voyager.Although they were designated officially to study just the planetary systems of Jupiter and Saturn, the space probes were able to continue their mission into the outer solar system, and they are expected to push through the heliosheath in deep space.Voyager is planetary exploration on a grand scale.
First conceived as a "Grand Tour" of the solar system from Jupiter to Pluto, then scaled back to a more modest mission called Mariner Jupiter-Saturn until its incarnation on the eve of launch as Voyager, the mission has been, and will remain well into the future, NASA's biggest planetary expedition. The two Voyagers have explored more planets (four), have discovered more moons (22), and have returned more photographic images, than any other space flight. The original price tag of nearly a billion dollars made it the second most expensive planetary voyage, exceeded only by Viking, which landed on Mars in 1976.Each Voyager spacecraft weighed more than any Surveyor or Ranger sent to the Moon and more than any Mariner or Pioneer probe (except for Pioneer Venus), though less than the combined weight of the Viking lander and orbiter.
The twin Voyager 1 and 2 spacecraft continue exploring where nothing from Earth has flown before. In the 34th year after their 1977 launches, they each are much farther away from Earth and the Sun than Pluto. Voyager 1 and 2 are now in the "Heliosheath" - the outermost layer of the heliosphere where the solar wind is slowed by the pressure of interstellar gas. Both spacecraft are still sending scientific information about their surroundings through the Deep Space Network (DSN) .
As of 2012, Voyager 1 is the farthest manmade object that has ever been sent from the Earth. On 15 June 2012, scientists at NASA reported that Voyager 1 might be very close to entering interstellar space and becoming the first manmade object to leave the Solar System.
Both of these scientific missions into outer space have gathered large amounts of data about the gas giants of the solar system, and their orbiting satellites, about which little had been previously known. In addition, the trajectories of the two spacecraft have been used to place limits on the existence of any hypothetical trans-Neptunian planets.
Of the two space probes of the Voyager Program, Voyager 2 was launched first. Its trajectory was designed to take advantage of an unusual alignment of the planets (that occurs once every 177 years) that allowed one space probe to fly by Jupiter, Saturn, Uranus, and Neptune, if everything went well. Of course, in case of a serious malfunction, such as in all of the space probe's radio transmitters or receivers, then that would have been the end of the long mission (to four planets), since there was not a second space probe to fill the gap. That was the gamble that NASA and the JPL were forced to take.
During the 1990s, Voyager 1 overtook the slower deep-space probes Pioneer 10 and Pioneer 11 to become the most distant manmade object from Earth, a record that it will keep for the foreseeable future. Even the faster (at its launch) New Horizons space probe will not pass it, since the final speed of New Horizons (after maneuvering within the solar system) will be less than the current speed of Voyager 1.
Voyager 1 and Pioneer 10 are the most widely separated man-made objects anywhere, since they are traveling in roughly opposite directions from the Solar System.
Periodic contact has been maintained with Voyager 1 and Voyager 2 to monitor conditions in the outer expanses of the Solar System. The radioactive power sources of both spacecraft were still producing significant amounts of electric power as of 2012, keeping them operational, and it is hoped that this will allow the heliopause of the Solar System to be located and investigated.
On June 10, 2011, scientists studying the Voyager data noticed what may be giant magnetic bubbles located in the heliosphere, the region of our solar system that separates us from the violent solar winds of interstellar space. The bubbles, scientists theorize, form when the magnetic field of the Sun becomes warped at the edge of our Solar System.
The Voyager primary mission was completed in 1989, with the close flyby of Neptune by Voyager 2. The Voyager Interstellar Mission (VIM) is a mission extension, which began when the two spacecraft had already been in flight for over 12 years.Both spacecraft also have adequate electrical power and attitude control propellant to continue operating until around 2025, after which there may not be available electrical power to support science instrument operation. At that time, science data return and spacecraft operations will cease.
Both Voyagers are headed towards the outer boundary of the solar system in search of the heliopause, the region where the Sun's influence wanes and the beginning of interstellar space can be sensed. The heliopause has never been reached by any spacecraft; the Voyagers may be the first to pass through this region, which is thought to exist somewhere from 8 to 14 billion miles from the Sun. This is where the million-mile-per-hour solar winds slows to about 250,000 miles per hour—the first indication that the wind is nearing the heliopause. The Voyagers should cross the heliopause 10 to 20 years after reaching the termination shock. The Voyagers have enough electrical power and thruster fuel to operate at least until 2020. By that time, Voyager 1 will be 12.4 billion miles (19.9 billion KM) from the Sun and Voyager 2 will be 10.5 billion miles (16.9 billion KM) away. Eventually, the Voyagers will pass other stars. In about 40,000 years, Voyager 1 will drift within 1.6 light years (9.3 trillion miles) of AC+79 3888, a star in the constellation of Camelopardalis. In some 296,000 years, Voyager 2 will pass 4.3 light years (25 trillion miles) from Sirius, the brightest star in the sky . The Voyagers are destined—perhaps eternally—to wander the Milky Way.
Current Status :
On December 3, 2012, NASA scientists announced that Voyager 1 had discovered a previously unknown region of the heliosphere. Described as a "magnetic highway," here the pressure of the interstellar medium sweeps back the Sun’s magnetic field and with it many of the slower moving particles emerging from within the solar system. These are mixed with faster moving particles entering the solar system from the interstellar medium. The magnetic field in this newly discovered region is 10 times more intense than Voyager 1 encountered before the termination shock. It is expected to be the last barrier before the spacecraft exits the solar system completely and enters interstellar space.
On November 7, 2012, Voyager 2 reached 100 AU, making it the third human made object to reach 100 AU. Voyager 1 was 122 AU from the Sun, and Pioneer 10 is presumed to be at 107 AU. Both of the Voyager Spacecraft are performing well and are still communicating with the Earth, while Pioneer has ceased communications. Both Voyagers are healthy and well, as they continue to study the Heliosheath and look for the Heliopause, where the solar wind ends and Interstellar space begins.
Voyager Golden Record
The Voyager Golden Records are phonograph records which were included aboard both Voyager spacecraft, which were launched in 1977. They contain sounds and images selected to portray the diversity of life and culture on Earth, and are intended for any intelligent extraterrestrial life form, or for future humans, who may find them.
The contents of the Voyager Golden Record is a collection of 116 images and a variety of natural sounds, such as those made by surf, wind, and thunder, and animal sounds, including the songs of birds and whales. To this they added musical selections from different cultures and eras, spoken greetings in fifty-nine languages, and printed messages from President Jimmy Carter and U.N. Secretary-General Kurt Waldheim.
More Info : contents of voyager golden record
Pale Blue Dot
The Pale Blue Dot is a photograph of planet Earth taken in 1990 by the Voyager 1 spacecraft from a record distance of about 6 billion kilometers (3.7 billion miles) from Earth, as part of the solar system Family Portrait series of images. In the photograph, Earth is shown as a tiny dot (0.12 pixel in size) against the vastness of space.
Images taken by Voyager Spacecrafts
Click Here
More Info on Voyager Mission
Voyager Program
Voyager 1
Voyager 2
The Voyage